Ligand-enabled cross-coupling of C(sp³)-H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis

Kelvin S. L. Chan, Masayuki Wasa, Ling Chu, Brian N. Laforteza, Masanori Miura and Jin-Quan Yu*

There have been numerous developments in C–H activation reactions in the past decade. Attracted by the ability to functionalize molecules directly at ostensibly unreactive C–H bonds, chemists have discovered reaction conditions that enable reactions of C(sp³)-H and C(sp³)-H bonds with a variety of coupling partners. Despite these advances, the development of suitable ligands that enable catalytic C(sp³)-H bond functionalization remains a significant challenge. Herein we report the discovery of a mono-N-protected amino acid ligand that enables Pd(II)-catalysed coupling of γ-C(sp³)-H bonds in triflylated protected amines with arylboron reagents. Remarkably, no background reaction was observed in the absence of ligand. A variety of amine substrates and arylboron reagents were cross-coupled using this method. Arylation of optically active substrates derived from amino acids also provides a potential route for preparing non-proteinogenic amino acids.

Translational-metal-catalysed C–H activation directed by heteroatom directing groups has rapidly emerged as a fertile field for developing a diverse range of catalytic carbon–carbon and carbon–heteroatom bond-forming reactions.1–10. During our efforts towards the development of Pd(II)-catalysed C–H activation reactions using a broad range of synthetically useful substrates, it became evident that controlling the reactivity and selectivity of catalysts through the use of external ligands, such as amino acids,11–16, pyridines and quinolines,17,18, is crucial to realizing their full potential as useful tools for synthesis. Previously, we demonstrated that weak coordinating functional groups, such as –COOH, –OH, –CN and –OMe, can cooperate with a mono-N-protected amino acid (MPAA) ligand on the Pd(II) centre to lower the transition-state energy and drastically accelerate the aromatic C(sp³)-H activation step.12–16. On the contrary, typically C(sp³)-H activation reactions are promoted by a strong coordinating directing group without ligand assistance,19–24 except for a rare example of moderate rate enhancement by MPAA ligands in the lactonization of benzylic C(sp³)-H bonds.25 Therefore we embarked on the development of a ligand scaffold that can promote C(sp³)-H activation of amine derivatives, a major class of synthetically useful compounds. Although a number of examples of arylation of γ-C(sp³)-H bonds in amines using strong coordinating auxiliaries have been reported (Fig. 1a)26–30, ligand-enabled activation of γ-C(sp³)-H bonds in amines remains to be established. Herein we report the first example of Pd-catalysed cross-coupling of γ-C(sp³)-H bonds of triflyl-protected amines (R–NHTf) with arylboron reagents through the use of a MPAA ligand. Remarkably, no background reaction is observed in the absence of the MPAA ligand (Fig. 1b), which thus implies the feasibility of using MPAA as a ligand to control the regioselectivity and enantioselectivity in the activation of C(sp³)-H bonds. This reaction also allows for rapid generation of novel amino acids and amino alcohols that are broadly useful in syntheses of bioactive molecules and chiral compounds.31

Results and discussion

Recently, the use of inert C–H bonds as coupling partners for Suzuki coupling with organoboron reagents has been made possible using Pd(II)/Pd(0) catalysis.19,32,33. Although this new catalytic reaction provides a variety of new disconnections for carbon–carbon bond formation, cross-coupling of C(sp³)-H bonds with organoboron reagents is generally limited to substrates derived from carboxylic acids.14,19,34,35. The synthetic importance of amines guided us to focus on the development of cross-coupling of C(sp³)-H bonds in amines and arylamines with arylboron reagents. In particular, we envisioned that rapid generation of a library of non-proteinogenic amino esters could be achieved via γ-C(sp³)-H functionalization of substrates derived from amino acids such as 1. Encouraged by our previous studies on triflamide-directed C(sp³)-H olefination, 2 and our previous studies on triflamide-directed C(sp³)-H amination, 3 we embarked on the development of a ligand scaffold that can promote C(sp³)-H activation of amine derivatives, a major class of synthetically useful compounds. Although a number of examples of arylation of γ-C(sp³)-H bonds in amines using strong coordinating auxiliaries have been reported (Fig. 1a)26–30, ligand-enabled activation of γ-C(sp³)-H bonds in amines remains to be established. Herein we report the first example of Pd-catalysed cross-coupling of γ-C(sp³)-H bonds of triflyl-protected amines (R–NHTf) with arylboron reagents through the use of a MPAA ligand. Remarkably, no background reaction is observed in the absence of the MPAA ligand (Fig. 1b), which thus implies the feasibility of using MPAA as a ligand to control the regioselectivity and enantioselectivity in the activation of C(sp³)-H bonds. This reaction also allows for rapid generation of novel amino acids and amino alcohols that are broadly useful in syntheses of bioactive molecules and chiral compounds.31

Figure 1 | Ligand-enabled C(sp³)-H activation. a. C–H activation of aliphatic amines directed by strong σ chelation. b. Unreactive amine substrates in the absence of strong σ chelation. c. Ligand-enabled γ-C(sp³)-H arylation of amines. HFIP, hexafluoroisopropanol.
we demonstrated a combination of weak σ coordination from the heteroatom-
directing group of the substrate and bidentate coordination from a MPAA ligand
on the Pd(II) centre could accelerate C(sp²)-H activation 14. We hypothesized
that the trilamine could form an imidate-like moiety as a weak coordinating σ donor when deprotonated under basic conditions. We therefore began screening of conditions in
the presence of MPAA ligands to achieve the cross-coupling of 1 with arylobor on reagent 2.

To our delight, when we introduced N-acetyl-L-valine (Ac-L-Val-OH) into the reaction mixture, we obtained the desired γ-arylation product in 42% yield (Table 1, entry 1). Further screening of MPAA ligands revealed that L-α-amino ester 1 gave a higher yield when δ-enantiomers of the MPAA ligands were used (Table 1, entries 1–4). For example, the δ-enantiomer of N-acetyl-L-tert-leucine (Ac-L-Leu-OH) gave a yield of only 46%, but the δ-enantiomer improved the yields to 65%. This provides evidence for the (steric) impact of MPAA ligands on the reactivity of the catalytic system. Encouraged by these results, we proceeded to optimize the reaction conditions using Ac-L-Leu-OH, and found that the use of mild bases, such as NaHCO₃, was crucial to the reactivity. In general, sodium salts performed better than their corresponding potassium counterparts (Table 1, entries 6 and 7). Among the bases screened, carbonates and bicarbonates were found to be optimal, with 6.0 equiv. sodium bicarbonate affording the highest yield of 82%. The use of 5 mol% Pd catalyst dropped the yield to 46% (Table 1, entry 15). The control experiment carried out in the absence of a Pd(II) catalyst gave no product (Table 1, entry 14), and found that Pd(OTf)₂(MeCN)₄ (OTf = OSO₂CF₃) gave the highest yield of 82%. The use of 5 mol% Pd catalyst dropped the yield to 46% (Table 1, entry 15). The control experiment carried out in the absence of a Pd(II) catalyst gave no product (Table 1, entry 16). Further comprehensive screening data are presented in the Supplementary Information.

With preliminary conditions for the cross-coupling in hand, we proceeded to re-examine systematically the MPAA ligand in an effort to develop a high-yielding protocol (Table 2). As described in Table 1, there was an observed increase in yield when the δ-enantiomer of the substrate reacted in the presence of the δ-enantiomer of the MPAA ligand. To screen a variety of MPAA ligands,
we opted to perform the ligand screening on the more abundant L-enantiomer of the amino acids, and the d-enantiomer of the trifluoromethyl substrate (4). Our initial ligand screening focused on identifying the optimal N-protecting group by screening a variety of L-valine derivatives. We discovered that N-methyl-L-valine (Me-L-Val-OH, Table 2, entry 1) gave no product, but N-formyl-L-valine (For-L-Val-OH, Table 2, entry 2) afforded only 18% yield. Among the protecting groups screened, Ac-L-Val-OH (Table 2, entry 3) afforded the highest yield of 68%, but N-carbamates (Table 2, entries 4–7) performed poorly. Having identified the acetyl moiety as the best N-protecting group, we proceeded to identify the optimal side chain. N-acetyl-glycine (Ac-Gly-OH) and L-isoleucine (Ac-L-Ile-OH) afforded the highest yield of 82% (Table 2, entries 13).

Although we identified Ac-L-Ile-OH (Table 2, entry 13) as the optimal ligand, we needed a D-enantiomer of the MPAA ligand to arylate the natural L-amino acid substrate. As Ac-D-Ile-OH is difficult to access, we decided to use the more economical Ac-D-L-Leu-OH (3) as the ligand, which gave a comparable yield (Table 2, entry 12). With the optimized reaction conditions in hand, we cross-coupled the L-amino ester 1 with a wide variety of arylboronic acid pinacol esters (ArBPin) in the presence of ligand 3 (Table 3). Ester groups at the meta- and para-positions of the phenyl ring gave yields from 64 to 82% (1a–1c). The unsubstituted phenyl ring afforded a moderate yield of 66% (1d). There was no significant racemization at the chiral centre, as determined by high-performance liquid chromatography. The reaction conditions were amenable to a variety of fluorinated and trifluoromethyl-substituted aryls (1e–1i), which suggests that the MPAA ligands also promote cross-coupling with a wide variety of fluorinated and trifluoromethyl-functionalized aryls.

With the optimized reaction conditions in hand, we cross-coupled with a wide variety of arylboronic acid pinacol esters (ArBPin) in the presence of ligand 3 (Table 3). Ester groups at the meta- and para-positions of the phenyl ring gave yields from 64 to 82% (1a–1c). The unsubstituted phenyl ring afforded a moderate yield of 66% (1d). There was no significant racemization at the chiral centre, as determined by high-performance liquid chromatography. The reaction conditions were amenable to a variety of fluorinated and trifluoromethyl-substituted aryls (1e–1i), which suggests that the MPAA ligands also promote cross-coupling with a wide variety of fluorinated and trifluoromethyl-functionalized aryls.
and 82% yield, respectively, with the monoarylated product 5a obtained with a diastereomeric ratio of 4.7:1. We anticipate further optimization of ligands could improve the monoselectivity and dia-
stereoselectivity. Arylation of isoleucine derivative 7 gave the corresponding product 7a in 50% yield. The β-amino acid derivative 8 could also be aryalted to give 8a in 57% yield. We were also delighted to be able to functionalize O-TBS-protected 1,2-amino alcohol 9 (TBS = tert-butylimidethysilyl) and O-Bn-protected 1,3-
amino alcohol 10 to give 9a and 10a in 56% and 61% yields, respect-
ively. Aliphatic amine 11 could also undergo cross-coupling to give 11a in 54% yield. We also found that the benzylc C(sp)³–H bond in aniline 12 could be aryalted with this method with lower catalyst and ligand loading, lower reaction temperature and a reduced reaction time (5 mol% Pd and 10 mol% ligand, 80 °C and eight hours).

Conclusion
In summary, we have developed Pd(0)-catalysed cross-coupling of γ-C(sp)³–H bonds in R–NHTf with arylboron reagents using a MPAA ligand. γ-C(sp)³–H bonds in a variety of alky1 amines, including 1,2- and 1,3-amino alcohols and amino acids, can be coupled with a diverse range of arylboron reagents. The demon-
stration of the ligand-enabled C(sp)³–H bond activation provides guidance for further development of more-effective cata-
lysts. The complete absence of background reaction without ligands bodes well for developing enantioselective C(sp)³–H bond activation reactions.

Methods
In a 50 ml Schlenk tube, starting material 1 (49.8 mg, 0.2 mmol), 4-methoxy carbonylphenylboronic acid pinacol ester (2) (104.8 mg, 0.4 mmol), Pd(OOTf)₃ (11.4 mg, 0.02 mmol), Ac⁻¹-Leu-ΟH (3) (6.9 mg, 0.04 mmol), H₂NCOH (100.8 mg, 1.2 mmol), Ag₂CO₃ (110.3 mg, 0.4 mmol) and 1,4-benzo quinone (10.8 mg, 0.1 mmol) were combined. The flask was evacuated and backfilled with N₂ three times, before a solution of dimethylsulfoxide (DMSO,
concentrated backfilled with N₂ three times, before a solution of dimethylsulfoxide (DMSO,

References
3. Daugulis, O., Do, H-Q. & Shabashov, D. Palladium- and copper-
22. Chen, K., Hu, F., Zhang, S.-Q. & Shi, B.-F. Pd(0)-catalyzed alkylation of unactivated C(sp)³–H bonds: efficient synthesis of optically active unnatural α-

NATURE CHEMISTRY DOI: 10.1038/NCHEM.1836

© 2014 Macmillan Publishers Limited. All rights reserved.

Acknowledgements

This work was supported by The Scripps Research Institute and the National Institutes of Health (NIGMS, 2R01GM084019). K.S.L.C. thanks the Agency for Science, Technology and Research (A*STAR) Singapore for a predoctoral fellowship. M.W. thanks Bristol Myers Squibb for a predoctoral fellowship. M.M. thanks Astellas Pharma Inc. for a postdoctoral fellowship. This is The Scripps Research Institute (TSRI) manuscript no. 25049.

Author contributions

K.S.L.C. conceived the study, principally performed the experiments and wrote the manuscript, M.W. helped with conceiving the study and preparing the manuscript, L.C. and B.N.L. performed experiments on coupling-partner scope, M.M. helped with identifying the deprotection strategy and J-Q.Y. provided overall supervision. All the authors discussed the results and commented on the manuscript.

Additional information

Supplementary information and chemical compound information are available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be sent to J-Q.Y.

Competing financial interests

The authors declare no competing financial interests.